Binary Numbers

The *decimal* system of expressing numbers is based on powers of 10 - see the table below for examples of numbers expressed in decimal form.

		Powers of 10							
		10 ⁵	10 ⁴	10^3	10 ²	10¹	10°		
		100 000	10 000	1000	100	10	1		
Number	87					8	7		
	1253			1	2	5	3		
	34 801		3	4	8	0	1		
	926 083	9	2	6	0	8	3		

These numbers can be shown in their expanded form to show the power of 10 represented by each digit.

$$87 = (8 \times 10^{1}) + (7 \times 10^{0})$$
$$= (8 \times 10) + (7 \times 1)$$
$$= 80 + 7$$

$$1253 = (1 \times 10^{3}) + (2 \times 10^{2}) + (5 \times 10^{1}) + (3 \times 10^{0})$$

= $(1 \times 1000) + (2 \times 100) + (5 \times 10) + (3 \times 1)$
= $1000 + 200 + 50 + 3$

$$34\ 801 = (3 \times 10^{4}) + (4 \times 10^{3}) + (8 \times 10^{2}) + (0 \times 10^{1}) + (1 \times 10^{0})$$

$$= (3 \times 10\ 000) + (4 \times 1000) + (8 \times 100) + (0 \times 10) + 1$$

$$= 30\ 000 + 4000 + 800 + 1$$

EXERCISE 1

- 1. Express 926 083 in the expanded form showing the power of 10 represented by each digit. (See examples above)
- 2. Express the following decimal numbers in expanded form showing the power of 10 represented by each digit.
 - (a) 579
- (b) 7008
- (c) 12 730
- (d) 481 597

- (e) 690 348 (f) 2 451 093
- (g) 51 672 901
- (h) 818 403 592

The *binary* system of expressing numbers is based on powers of **2**. There are only two digits used in numbers expressed in binary form - **0** and **1**.

See the table below for examples of numbers expressed in binary form.

		Powers of 2						
		2 ⁵	2 ⁴	2^3	2 ²	21	2°	
		32	16	8	4	2	1	
Binary Number	11					1	1	
	101				1	0	1	
	1111			1	1	1	1	
	10101		1	0	1	0	1	
	110110	1	1	0	1	1	0	

By expressing binary numbers in their expanded form the equivalent decimal numbers can be found.

$$11 = (1 \times 2^{1}) + (1 \times 2^{0})$$

$$= (1 \times 2) + (1 \times 1)$$

$$= 2 + 1$$

$$= 3 \text{ (decimal equivalent)}$$

$$101 = (1 \times 2^{2}) + (0 \times 2^{1}) + (1 \times 2^{0})$$

$$= (1 \times 4) + (0 \times 2) + (1 \times 1)$$

$$= 4 + 0 + 1$$

$$= 5 \text{ (decimal equivalent)}$$

$$1111 = (1 \times 2^{3}) + (1 \times 2^{2}) + (1 \times 2^{1}) + (1 \times 2^{0})$$

$$= (1 \times 8) + (1 \times 4) + (1 \times 2) + (1 \times 1)$$

$$= 8 + 4 + 2 + 1$$

$$= 15 \text{ (decimal equivalent)}$$

$$10101 = (1 \times 2^{4}) + (0 \times 2^{3}) + (1 \times 2^{2}) + (0 \times 2^{1}) + (1 \times 2^{0})$$

$$= (1 \times 16) + (0 \times 8) + (1 \times 4) + (0 \times 2) + 1$$

$$= 16 + 0 + 4 + 0 + 1$$

$$= 21 \text{ (decimal equivalent)}$$

EXERCISE 2

- 1. (a) Express 110110 in the expanded form showing the power of 2 represented by each digit. (See examples on previous page)
 - (b) What is the decimal equivalent of the binary number 110110?

Numbers with base 10 (decimal numbers) are represented with a subscript 10:

for example, 23_{10} 296_{10} 4904_{10}

Numbers with base 2 (binary numbers) are represented with a subscript 2:

for example, 101₂ 11011₂ 10101010,

From the examples on the previous page:

$$11_2 = 3_{10}$$
 $101_2 = 5_{10}$
 $1111_2 = 15_{10}$
 $10101_2 = 21_{10}$

2. From question 1 complete the following:

$$1101\hat{1}0_2 = \underline{\hspace{1cm}}_{10}$$

- **3.** Find the following:
 - (a) 2^6
- (b) 2^7

- (c) 2^8 (d) 2^9 (e) 2^{10} (f) 2^{11} (i) 2^{14} (j) 2^{15} (k) 2^{16} (l) 2^{17}

- (g) 2¹²
 - (h) 2^{13}

- **4.** Convert the following binary numbers to numbers with a base 10.
 - (a) 111,
 - (c) 1011₂
 - (e) 101111₁,
 - (g) 1101010₂

 - (i) 1010110101₂ (k) 10100001111₂ (m) 1000000000000₂
- (b) 1001₂
- (d) 110001,
- (f) 110011,
- (h) 11001010₂
- (j) 100110011101,
- (l) 10011111011010₂
- (n) 100000000000100₂
- (p) 11111111111111₂

5. Convert the following decimal numbers (base 10) to binary numbers (base 2).

To covert from a decimal number (base 10) to binary number (base 2) follow these steps.

- Step 1 Find the largest power of 2 (2, 4, 8, 16, 32, 64) that is smaller than or equal to the number.
- Step 2 Subtract this from the number and find the remainder.
- Step 3 Repeat step 1 for the remainder.
- Step 4 Repeat these steps until there is a remainder of 0 or 1.
- **Step 5** List the number of each power of 2 starting with the largest to find the binary number.

Example 58₁₀

Step 2
$$58 - 32 = 26$$

The largest power of 2 less than or equal to 10 is 8.

$$10 - 8 = 2$$

The largest power of 2 less than or equal to 2 is 2.

$$2 - 2 = 0$$

Step 5
$$(1 \times 32) + (1 \times 16) + (1 \times 8) + (0 \times 4) + (1 \times 2) + (0 \times 1)$$

= 111010₂

$$58_{10} = 111010_2$$

(a)
$$13_{10}$$

(b)
$$17_{10}$$

(c)
$$20_{10}$$

(d)
$$22_{10}$$

(e)
$$24_{10}$$

(f)
$$31_{10}$$

$$(g) 32_{10}$$

(h)
$$39_{10}$$

(i)
$$45_{10}$$

$$(j) 60_{10}$$

$$(k) 73_{10}$$

$$(1) 92_{10}$$

$$(m) 111_{10}$$

(n)
$$144_{10}$$

(o)
$$225_{10}$$

(p)
$$257_{10}$$

(q)
$$437_{10}$$

$$(r) 789_{10}$$

(s)
$$1030_{10}$$

(t)
$$1047_{10}$$

(u)
$$3278_{10}$$

$$(v) 4311_{10}$$

$$(w) 6783_{10}$$

$$(x) 9460_{10}$$

EXERCISE 3

$$1_2 + 1_2 = 10_2$$
 and
$$1_2 + 1_2 + 1_2 = 11_2$$

$$+ \underbrace{\frac{111101}{1111}}_{101100} \underbrace{\frac{1+1=10}{\text{Write 0}}}_{\text{Carry 1}}$$

$$11101_2 + 1111_2 = 101100_2$$

1. (a)
$$100_2 + 11_2$$

(c)
$$101_2 + 101_2$$

(g)
$$110101_2 + 1100111_2$$

(b)
$$11_2 + 1_2$$

(d)
$$1011_2 + 11_2$$

(h)
$$111111_2 + 111111_2$$

(e)
$$101_2 + 101_2$$
 (d) $1011_2 + 11_2$ (e) $101011_2 + 110011_2$ (f) $1011_2 + 111011_2$ (g) $110101_2 + 1100111_2$ (h) $11111_2 + 11111_2$ (i) $10110111_2 + 1111000_2$ (j) $10000001_2 + 111100001_2$ (k) $11100111_2 + 1111111110011_2$

The above answers can be checked by changing the binary numbers to decimal numbers and adding.

Using the above example

$$11101_2 + 1111_2 = 101100_2$$
$$29_{10} + 15_{10} = 44_{10}$$

2. Check the answers to the addition problems in question 1 by converting the binary numbers to decimal numbers and performing the addition.

EXERCISE 4

- **1.** Perform the following multiplications of binary numbers.
- **2.** Check the answers by converting the binary numbers to decimal numbers and performing the multiplications.

Example
$$111_{2} \times 101_{2}$$

$$\frac{111}{\times 101}$$

$$\frac{\times 101}{111}$$

$$0000$$

$$\frac{11100}{100011}$$

$$111_{2} \times 101_{2}$$

$$= 100011,$$

Converting to decimal numbers: $111_2 = 7_{10}$ $101_2 = 5_{10}$

$$7_{10} \times 5_{10} = 35_{10} (100011_2)$$

- (a) $101_2 \times 11_2$
- (c) $1010_2 \times 11_2$
- (e) $11001_2 \times 11_2$
- (g) $1111111_2 \times 11_2$
- (i) $11011_2 \times 101_2$
- (k) $11010111_2 \times 101_2$
- (m) $101011_2 \times 100_2$
- (o) $1010111_2 \times 100_2$

- (b) $110_2 \times 11_2$
- (d) $1111_2 \times 10_2$
- (f) $101010_2 \times 11_2$
- (h) $111011111_2 \times 11_2$
- (j) $1110101_2 \times 101_2$
- (1) $1011111011_2 \times 101_2$
- (n) $110011001_2 \times 100_2$
- (p) $11001111011_2 \times 100_2$