Master Maths 10 Worksheet 32 Parabolas

Name:

- 1. State which of the following are quadratic equations.

- **A** $y = 3x^2 + 5$ **B** m = 2n 5 **C** $b = 7 2a^3$ **D** $p = 8 + q^2$ **E** $y = x^3 + 2x^2 1$ **F** $d = 2c^2 + 7c 5$

2. (a) Complete the table of values below for the following equation.

$$y = x^2 - 2x - 3$$

х	-3	-2	-1	0	1	2	3	4	5
у									

(b) Plot these points on the graph below and connect them with a smooth curve.

- (c) What are the coordinates of the turning point?
- (d) Is this a maximum (MAX) or minimum (MIN) turning point?

3. Parabola **A** below has the equation $y = x^2$.

Match the other labelled parabolas with the following equations.

$$y = 2x^2$$

$$y = -x^2$$

$$y = \frac{1}{2} x^2$$

$$y = \frac{1}{3}x^2$$

$$y = -2x^2$$

$$y = -\frac{1}{3}x^2$$

4. Which of the parabolas in question 3 have maximum turning points?

- **5.** If the equations of the parabolas below were graphed:
 - (a) which would be *flatter* than the graph of $y = x^{2}$?

(b) which would have *maximum* turning points?

A
$$y = 2x^2 + 3$$

B
$$y = -5x^2 + 4x - 3$$

A
$$y = 2x^2 + 3$$

B $y = -5x^2 + 4x - 3$
C $y = \frac{1}{3}x^2 - 6x + 7$
D $y = 9x - 2x^2$
E $y = -\frac{1}{2}x^2 + 4x$
F $y = 8 + \frac{2}{5}x^2$
G $y = 1 - \frac{3}{4}x^2$
H $y = -3x + \frac{7}{9}x^2$
J $y = 4 - 3x^2 + 7x$

D
$$y = 9x - 2x^2$$

G
$$y = 1 - \frac{3}{4}x^2$$

H
$$y = -3x + \frac{7}{9}x^2$$

$$y = \frac{7}{3}x^2 + x$$

J
$$y = 4 - 3x^2 + 7x$$