Name:

1. State which of the following are quadratic equations.
A $y=3 x^{2}+5$
B $m=2 n-5$
C $b=7-2 a^{3}$
D $p=8+q^{2}$
E $y=x^{3}+2 x^{2}-1$
F $d=2 c^{2}+7 c-5$

2. (a) Complete the table of values below for the following equation.

$$
y=x^{2}-2 x-3
$$

x	-3	-2	-1	0	1	2	3	4	5
y									

(b) Plot these points on the graph below and connect them with a smooth curve.

(c) What are the coordinates of the turning point?
(d) Is this a maximum (MAX) or minimum (MIN) turning point?
3. Parabola \mathbf{A} below has the equation $y=x^{2}$.

Match the other labelled parabolas with the following equations.
$y=2 x^{2} \square$
$y=-x^{2} \square y=\frac{1}{2} x^{2}$ \square
$y=\frac{1}{3} x^{2} \square$

$$
y=-2 x^{2} \square
$$

$$
y=-\frac{1}{3} x^{2} \square
$$

4. Which of the parabolas
in question 3 have
maximum turning points? \square
5. If the equations of the parabolas below were graphed:
(a) which would be flatter than the graph of $y=x^{2}$? \qquad
(b) which would have maximum turning points?
\square
A $y=2 x^{2}+3$
B $y=-5 x^{2}+4 x-3$
C $y=\frac{1}{3} x^{2}-6 x+7$
D $y=9 x-2 x^{2}$
E $y=-\frac{1}{2} x^{2}+4 x$
F $y=8+\frac{2}{5} x^{2}$
G $y=1-\frac{3}{4} x^{2}$
H $y=-3 x+\frac{7}{9} x^{2}$
I $y=\frac{7}{3} x^{2}+x$
J $y=4-3 x^{2}+7 x$
